21 research outputs found

    Conditional Similarity Networks

    Full text link
    What makes images similar? To measure the similarity between images, they are typically embedded in a feature-vector space, in which their distance preserve the relative dissimilarity. However, when learning such similarity embeddings the simplifying assumption is commonly made that images are only compared to one unique measure of similarity. A main reason for this is that contradicting notions of similarities cannot be captured in a single space. To address this shortcoming, we propose Conditional Similarity Networks (CSNs) that learn embeddings differentiated into semantically distinct subspaces that capture the different notions of similarities. CSNs jointly learn a disentangled embedding where features for different similarities are encoded in separate dimensions as well as masks that select and reweight relevant dimensions to induce a subspace that encodes a specific similarity notion. We show that our approach learns interpretable image representations with visually relevant semantic subspaces. Further, when evaluating on triplet questions from multiple similarity notions our model even outperforms the accuracy obtained by training individual specialized networks for each notion separately.Comment: CVPR 201

    Probabilistic Meta-Representations Of Neural Networks

    Full text link
    Existing Bayesian treatments of neural networks are typically characterized by weak prior and approximate posterior distributions according to which all the weights are drawn independently. Here, we consider a richer prior distribution in which units in the network are represented by latent variables, and the weights between units are drawn conditionally on the values of the collection of those variables. This allows rich correlations between related weights, and can be seen as realizing a function prior with a Bayesian complexity regularizer ensuring simple solutions. We illustrate the resulting meta-representations and representations, elucidating the power of this prior.Comment: presented at UAI 2018 Uncertainty In Deep Learning Workshop (UDL AUG. 2018

    A Generative Model of Words and Relationships from Multiple Sources

    Full text link
    Neural language models are a powerful tool to embed words into semantic vector spaces. However, learning such models generally relies on the availability of abundant and diverse training examples. In highly specialised domains this requirement may not be met due to difficulties in obtaining a large corpus, or the limited range of expression in average use. Such domains may encode prior knowledge about entities in a knowledge base or ontology. We propose a generative model which integrates evidence from diverse data sources, enabling the sharing of semantic information. We achieve this by generalising the concept of co-occurrence from distributional semantics to include other relationships between entities or words, which we model as affine transformations on the embedding space. We demonstrate the effectiveness of this approach by outperforming recent models on a link prediction task and demonstrating its ability to profit from partially or fully unobserved data training labels. We further demonstrate the usefulness of learning from different data sources with overlapping vocabularies.Comment: 8 pages, 5 figures; incorporated feedback from reviewers; to appear in Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence 201

    Channel Vision Transformers: An Image Is Worth C x 16 x 16 Words

    Full text link
    Vision Transformer (ViT) has emerged as a powerful architecture in the realm of modern computer vision. However, its application in certain imaging fields, such as microscopy and satellite imaging, presents unique challenges. In these domains, images often contain multiple channels, each carrying semantically distinct and independent information. Furthermore, the model must demonstrate robustness to sparsity in input channels, as they may not be densely available during training or testing. In this paper, we propose a modification to the ViT architecture that enhances reasoning across the input channels and introduce Hierarchical Channel Sampling (HCS) as an additional regularization technique to ensure robustness when only partial channels are presented during test time. Our proposed model, ChannelViT, constructs patch tokens independently from each input channel and utilizes a learnable channel embedding that is added to the patch tokens, similar to positional embeddings. We evaluate the performance of ChannelViT on ImageNet, JUMP-CP (microscopy cell imaging), and So2Sat (satellite imaging). Our results show that ChannelViT outperforms ViT on classification tasks and generalizes well, even when a subset of input channels is used during testing. Across our experiments, HCS proves to be a powerful regularizer, independent of the architecture employed, suggesting itself as a straightforward technique for robust ViT training. Lastly, we find that ChannelViT generalizes effectively even when there is limited access to all channels during training, highlighting its potential for multi-channel imaging under real-world conditions with sparse sensors. Our code is available at https://github.com/insitro/ChannelViT
    corecore